Synchronous Parsing of Syntactic and Semantic Structures
نویسنده
چکیده
We describe in this paper an approach for synchronous parsing of syntactic and semantic dependency structures that combines recent advances in the area to get a very high accuracy as well at the same time very good parsing times. The time for parsing, the time for training and the values of the memory footprint are to our knowledge the best results reported while the parsing accuracy are as high as the highest results reported in the 2008 shared task. The corpora used in the shared task are still different to the dependency structures of the Meaning-Text Theory. Therefore, we outline the adaption of the approach to the dependency structures of the Meaning-Text Theory.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملOnline Graph Planarisation for Synchronous Parsing of Semantic and Syntactic Dependencies
This paper investigates a generative history-based parsing model that synchronises the derivation of non-planar graphs representing semantic dependencies with the derivation of dependency trees representing syntactic structures. To process non-planarity online, the semantic transition-based parser uses a new technique to dynamically reorder nodes during the derivation. While the synchronised de...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملA Latent Variable Model of Synchronous Parsing for Syntactic and Semantic Dependencies
We propose a solution to the challenge of the CoNLL 2008 shared task that uses a generative history-based latent variable model to predict the most likely derivation of a synchronous dependency parser for both syntactic and semantic dependencies. The submitted model yields 79.1% macroaverage F1 performance, for the joint task, 86.9% syntactic dependencies LAS and 71.0% semantic dependencies F1....
متن کاملTransforming Dependency Structures to Logical Forms for Semantic Parsing
The strongly typed syntax of grammar formalisms such as CCG, TAG, LFG and HPSG offers a synchronous framework for deriving syntactic structures and semantic logical forms. In contrast—partly due to the lack of a strong type system—dependency structures are easy to annotate and have become a widely used form of syntactic analysis for many languages. However, the lack of a type system makes a for...
متن کامل